
A Programming Interface for Application-Aware Adaptation
in Mobile Computing

Brian D. Noble, Morgan Price, and M. Satyanarayanan
School of Computer Science
Carnegie Mellon University

fbnoble,mprice,satyag@cs.cmu.edu

Abstract

Mobile clients face wide variations in network
conditions and local resource availability when
accessing remote data. Coping with this uncer-
tainty requires the ability to retrieve and present
data at varying degrees of fidelity. In this pa-
per we present applicaton-aware adaptation as a
solution to this problem. The essence of our so-
lution is a collaborative partnership between ap-
plications and the operating system. We describe
the Odyssey API for application-aware adaptation
and demonstrate its use in accessing two types of
data: video and maps.

1. Introduction

Mobile clients face many challenges in accessing data
from servers. Because a mobile client has to be com-
pact and lightweight, it is typically resource-poor rel-
ative to a desktop client. Network connectivity, es-
pecially via wireless media over a large area, tends to
vary considerably in bandwidth, latency, reliability and
cost. Power management considerations often require
certain actions to be deferred, avoided or slowed down
to prolong battery life. The relative costs of accessing
distributed services changes as mobile clients move.
Finally, the very nature of mobility has a negative im-
pact on robustness and security.

As a consequence of these constraints, the mech-
anism for mobile data access has to be adaptive in

This research was supportedby the Air Force Materiel Command(AFMC) and
ARPA under contract number F196828-93-C-0193. Additional support was
provided by the IBM Corporation, Intel Corporation and AT&T Corporation.
The views and conclusions expressed in this paper are those of the authors,
and should not be interpreted as those of the fundingorganizations or Carnegie
Mellon University.

nature, dynamically conforming to the limitations of
individual clients and their current environments. We
believe that such adaptation can best be performed by a
collaborative partnership between the operating system
and individual applications. We refer to this strategy
as application-aware adaptation[10].

Application-aware adaptation characterizes the de-
sign space between two extremes. At one extreme,
adaptivity is entirely the responsibility of individual
applications. This means that there is no focal point
in the system to resolve the potentially incompatible
resource demands of individual applications. It also
means that there is no way to enforce limits on resource
usage. At the other extreme, adaptivity is completely
subsumed by the system. Although the feasibility of
this approach has been demonstrated in systems such
as Coda[5, 9], there are limits to its applicability. In
particular, the end-to-end argument[8] suggests that
there will be circumstances where only an application
can determine the best form of adaptation. Unless the
system is extended to incorporate specific knowledge
about every application, there will be situations where
adaptation by the system will be inadequate or even
counter-productive. By striking a balance between
these extremes, application-aware adaptation offers a
more promising approach to mobile data access. It per-
mits individual applications to determine how best to
adapt, but allows the system to retain management of
key resources and enforcement of decisions regarding
their usage.

How can application-aware adaptation be effectively
supported? This paper is a status report on our work
toward answering this question. This work is being
done in the the context of Odyssey, an experimental
Unix platform for mobility. We have implemented a
preliminary prototype and have demonstrated its use
in two applications accessing data in a mobile envi-



ronment. While rudimentary in many respects, our
prototype does provide initial evidence of the feasibil-
ity and effectiveness of application-aware adaptation.

We begin the paper by introducing the concept of
data fidelity and discussing the central role it plays
in application-aware adaptation. Next, we discuss a
number of factors influencing our design. We then
describe the design of Odyssey, focusing specifically
on its support for application-aware adaptation. Fi-
nally, we describe the implementation and status of our
prototype.

2. Data Fidelity

Under ideal circumstances, the data presented at a mo-
bile client should be identical to the current server copy.
As resources become scarce, it may no longer be feasi-
ble to completely preserve this correspondence; some
form of degradation is unavoidable. How does one
characterize the extent of this degradation? We define
fidelity as the degree to which a copy of data presented
for use matches the reference copy.

Fidelity has many dimensions. One well-known,
universal dimension is consistency. Other dimensions
depend on the type of data in question. For exam-
ple, video data has at least two additional dimensions:
frame rate and image quality of individual frames. Spa-
tial data, such as topographical maps, have dimensions
of minimum feature size or resolution. For telemetry
data, appropriate dimensions include sampling rate and
currency.

The dimensions of fidelity are natural axes of adap-
tation for mobility. But the adaptation cannot be solely
determined by the type of data; it also depends on the
application. As we show in the next section, different
applications using the same data may make different
tradeoffs among dimensions of fidelity.

2.1. Video Data in Mobile Environments

Consider a movie stored on a server, and two ap-
plications accessing that video stream from a mobile
client. The first application is a video playback appli-
cation, player, and the second, editor, is a video scene
editor. These two applications must make different
fidelity tradeoffs in accessing the same video stream.
No single policy can satisfy them both.

The player’s primary goal is to preserve correspon-
dence between movie time and real time. A secondary
goal is to play the movie at the original frame rate,
resolution, and image quality. In times of plentiful re-
sources, the player can indeed meet both goals. How-
ever, when network bandwidth becomes scarce, the
player may have to sacrifice its secondary goal in or-
der to meet its primary goal. Thus, it may choose
to switch to a black-and-white stream at full frame
rate, to drop frames, or otherwise reduce the band-
width requirements of the stream. To guard against
total disconnection, the player may even hoard a very
low quality version of the movie.

The editor’s main goal is very different from that of
the player; it must ensure that the user sees every frame
of the video stream to allow precise editing. To allow
this, the editor is willing to relax the correspondence
between movie time and real time. Thus, when network
bandwidth decreases, the editor will access the movie
at a rate slower than real time to avoid dropping frames.

It is hard to see how any single operating system pol-
icy can adequately service both of these applications’
needs, even though they are accessing exactly the same
data. Regardless of the system’s decision to change the
fidelity of the stream it is retrieving, either the player
or the editor – and quite possibly both – will not be
satisfied. No system can be clever enough to anticipate
and satisfy every application’s needs. On mobile ma-
chines, where the environment is unpredictable, such
unsatisfactory service will be even more evident.

3. Design Considerations

What is required to support application-aware adapta-
tion? Generally, the system must provide a set of API
extensions that allow applications to track and react
to their environment, and a system architecture which
effectively supports these extensions. In the sections
below, we outline the desired properties of the API
extensions and supporting architecture.

3.1. API Extensions

In order for applications to make decisions based on
their environment, they must be able to name aspects of
the environment that are important to them. This nam-
ing mechanism must be both simple and extensible.
Applications should be able to specify exactly those
features of the environment in which they are inter-



ested, and be notified of changes to just those features.
Such specification and notification should be efficient.
They must also fit into the programming style and cul-
ture of the base operating system, but cannot depend
on esoteric features. Popular applications run on an in-
creasingly diverse set of operating systems; providing
common adaptation facilities enhances the portability
of such applications.

As applications track changes in the environment,
they must adapt their access to data. Some types of
adaptation will require changes in operating system
policy. There must be an efficient, flexible, and exten-
sible mechanism to request such changes. Since the
operating system is the final arbiter of resource usage,
the request need not always be honored.

3.2. Supporting Architecture

What of the underlying architecture supporting these
extensions? The overriding goal is simplicity. We
are not trying to invent a new operating system, but
merely extend existing ones in simple ways. We have
striven to keep such extensions minimal, while making
them powerful enough to explore application-aware
adaptation for a wide range of data types.

It is important to note that we do not attempt to
provide resource guarantees to applications. Such
guarantees, typically encountered in real-time systems,
require guarantees from lower layers of the system.
But the environment of a mobile computer is too
unpredictable for such guarantees. Hence, we only
promise to inform applications when their environment
changes, and arbitrate between applications competing
for scarce and unpredictable resources.

Finally, our architecture should adhere to sound prin-
ciples of software engineering. Some functionality in
support of the API will be independent of the type of
data, while other functionality will be type-specific.
The architecture should provide isolation between dif-
ferent types of data as well as between the generic and
type-specific portions of the system.

4. Odyssey API

This section describes our design of the Odyssey API
supporting application-aware adaptation. As discussed
above, there are three components to the Odyssey API.
First, there is a way for applications and the system to

talk about salient features of the environment. Second,
there is a mechanism that enables applications to track
their environment. Third, there is a mechanism through
which applications request policy changes based upon
their environment.

4.1. What is an Application’s Environment?

We consider the salient features of an application’s
environment to be the resources available to that appli-
cation. Such resources can be either generic or type-
specific. Generic resources have meaning for all items
stored in Odyssey. Examples of generic resources in-
clude network bandwidth between the mobile client
and the server storing an item, available disk space on
the mobile client, and battery power remaining on the
mobile client. The generic resources in Odyssey are
listed in Figure 1.

Type-specific resources have meaning only for items
of a particular type. For example, consider a commer-
cial database that indexes items in the World Wide Web.
Such a service might sell a subscription that enables a
client to make some number of queries per day. The
number of queries left in a given day is a resource that
is sensible only in the context of queries against that
database.

Odyssey tracks and reports the availability of a re-
source, and how that availability changes. We measure
the availability of an individual resource with a single
scalar value. The units of a particular resource’s avail-
ability are chosen appropriately for that resource. For
example, network bandwidth is measured in bits per
second. Available disk space is measured in kilobytes.
Power remaining to a laptop is measured in minutes of
operation.

Some resources are estimated with respect to a par-
ticular item in the Odyssey store. We call such items
reference items. For example, network bandwidth be-
tween a mobile client and a server differs for different
servers. Thus, we only speak of network bandwidth
with respect to a particular reference item; the band-
width in question is that between the client and the
server storing that particular item. Since type-specific
resources only have meaning for items of a particular
type, they always have reference items.



Resource Units Reference Item?
Network Bandwidth bits per second yes
Network Latency microseconds yes
Disk Cache Space kilobytes no
CPU SPECints available no
Power minutes of computation no
Money cents no

This figure lists the generic resources defined for the Odyssey system. The first column lists the name of the resource.
The second column gives the units in which the resource is measured. The third column specifies whether or not the
resource is measured with respect to a particular item in the Odyssey store. Of particular interest is the last item,
money. Many experimental implementations of electronic money as well as systems that use money in exchange for
services exist. We believe that such services, particularly those which offer some sort of query facility, will become
more common. Note that these are only the generic resources; there may be others that are type-specific.

Figure 1: Generic Resources in Odyssey

4.2. How to Track the Environment?

For an application to track the availability of re-
sources two things must happen. First, the application
must inform the system of the resources in which it
is interested. Second, the system must monitor the
availability of resources, and notify the application
when the availability of one or more relevant resources
changes in an interesting way. For efficiency, we chose
to use asynchronous notification rather than polling in
Odyssey.

Naturally, not all applications will be interested in
the same set of resources. To tell the system what re-
sources an application is interested in, the Odyssey API
provides a call, ody request. For example, an ap-
plication making anody requestmight ask, “Please
invoke procedure bar if the network bandwidth be-
tween here and the server storing /ody/foo.c ex-
ceeds ten Mb/s or falls below one Mb/s.” The C decla-
rations for ody request and associated data struc-
tures appear in Figures 2 – 4.

Requests name the resource of interest, the bounds of
tolerance on that resource’s availability, the reference
item, and an upcall procedure. In our example above,
the resource of interest is network bandwidth. The
upper tolerance bound is ten Mb/s, and the lower bound
is one Mb/s. The reference item is /ody/foo.c, and
the upcall procedure is the procedure bar.

The resource is named in the ody req des t
structure, as are the tolerance bounds and the address
of the upcall procedure, which is a handler function
much like a signal handler. The resource is named by

an integer identifier. Generic resource identifiers are
known throughout the system; type-specific identifiers
are known only to portions of the system that imple-
ment that type, but are limited to a specific range. If the
resource is not within the specified tolerance bounds,
the call fails and returns the current value inres. Oth-
erwise, the request is registered with the system. If
the resource later strays outside of those bounds, the
system invokes the handler through an upcall.

If a request is granted by the system, the system
returns a request identifier. That request identifier is
also passed to the request handler when the application
is notified by the system. If the application no longer
wishes to be notified for that request, it can invoke
ody cancel on it.

4.3. How to Request Policy Change?

As applications are notified of resource changes,
they will need to adapt their access patterns. Some
of this adaptation will require changes in policy within
the operating system. Since policies are type-specific,
these requests for changes in policy must also by type-
specific. We call such a request a type-specific oper-
ation, or ody tsop. An example of a type specific
operation would be, “Please switch from the full color
version of this stream to the black-and-white version.”

Just as there is no way to predict the needs of all
applications , there is also no way to predict all possi-
ble requests for policy changes. So, instead of trying
to enumerate them for each type a priori, we instead
provide a general mechanism to allow for experimen-



/* Pathname resource request */
int ody request (path, req, res);
char *path; /* pathname of reference item */
ody_req_des_t *req; /* A request descriptor */
long *res; /* The request id returned, or current value */

/* Cancel a request */
int ody cancel (reqid);
long reqid; /* The request to cancel */

This figure shows the C declarations for the pathname-based version of ody request, as well as ody cancel. The
descriptor-based version is identical except that a file descriptor is used instead of path. Note that ody request is
similar to the UNIX sigvec system call. ody request allows an application to place a notification request req;
ody cancel cancels an outstanding request. Declarations for relevant data structures can be found in Figure 3; the
signature for the callback function to be invoked on notification of an outstanding ody request is shown in Figure 4.

Figure 2: C Declaration for ody request and ody cancel

/* A version stamp*/
typedef struct f

long gs; /* Version of generic resource interface*/
ody_codex_t codex; /* The type of the reference item*/
long cs; /* Version of type-specific resource interface*/

g ody_vers_t;

/* A resource request descriptor */
typedef struct f

long resource; /* Resource identifier */
ody_vers_t version; /* Version stamp */
long low, high; /* low, high values of window */
ODY_REQ_FN_T fn_ptr; /* function to call if window is left */

g ody_req_des_t;

These are the principal data structures used in the ody request call. ody vers t is used to ensure that the application
and system are using the same set of resource identifiers, and that the application and the system agree on the type of
the reference item. The type ody codex t is an enumeration of known types in the system, called codices. The
req des t type holds the fields of a request: the resource, version information, the window of tolerance, and the upcall
procedure. The signature for upcall procedures is shown in Figure 4.

Figure 3: Data Structures for ody request

/* A resource request handler */
typedef void (*ODY_REQ_FN_T)(long, long, long);
/* the three arguments are: */
/* the request id to which this notification is responding */
/* the resource identifier */
/* the current value of the resource */

This figure shows the type signature of a request handler. A request handler takes three arguments: the request identifier,
as returned by ody request, to which this notification is responding, a resource identifier denoting the resource that
has changed, and the new availability of that resource.

Figure 4: Notification Handler Declaration



/* Pathname-based type specific operation */
long ody_tsop (path, vers, op, argsz, arg, retsz, ret);
char *path; /* pathname of reference item */
ody_vers_t vers; /* version of this codex’ interface */
long op; /* which operation to perform */
size_t argsz; /* size of argument buffer */
void *arg; /* arguments for operation */
size_t retsz; /* size of return buffer */
void *ret; /* return buffer */

This figure shows the C declaration for ody tsop, the pathname-based invocation of a type-specific operation. The
descriptor-based version is identical except that a file descriptor is used instead of path. The arguments name the
reference item, version information, the operation to be performed, and buffers for the arguments and results. The
definition of ody vers t can be found in Figure 3. The sizes of the argument and result buffers must be passed, so that
layers that do not know the details of the particular type can pass arguments correctly. Note that this is similar in flavor
to the UNIX ioctl system call.

Figure 5: C Declaration for ody tsop

tation and extension. The C declaration for ody tsop
appears in Figure 5.

To invoke ody tsop, an application must specify
a reference item. It must also specify the operation to
perform, the arguments to the operation, and a buffer
for the return value. The type of the reference item
determines the type of the ody tsop, and the refer-
ence item is passed through to the body of code that
implements the ody tsop. The reference item can
be specified by file descriptor or pathname. The op-
eration is denoted by an integer identifier, and need
only be unique within a single type, thus preserving
independence between different types. The sizes of
these buffers are specific to the operation; hence, they
are also type-specific. To preserve isolation between
generic and type-specific portionsof Odyssey, the sizes
of these buffers must be specified.

The type-specific operation mechanism is designed
to allow applications to make policy requests. How-
ever, once it is present, ody tsop can be lever-
aged to provide a set of access methods richer than
the simple file system interface provided by com-
mon operating systems. For example, items of
type “video” might support the type-specific operation
video read frame, which reads a single variable
sized frame, in addition to the simpler read system
call. Such extension allows us to use data of different
types in ways that are natural to the data, rather than
forcing the data to fit the more restrictive file system
model.

5. Odyssey Structure

To support the Odyssey API, our design provides three
extensions to UNIX. First, we have added a notion of
type to the standard UNIX file system. Second, we have
added a generic cache manager, the viceroy, to provide
type-independent support for the Odyssey API. Third,
we have provided a set of wardens, which are part of
the Odyssey cache manager, each providing support
for an individual type in the Odyssey store. The next
three sections explore each of these in turn.

5.1. Adding Types to the Operating System

Odyssey provides a single, global namespace to its
clients. A simple example of such a namespace is
shown in Figure 6. This namespace is broken into
subspaces called tomes, or typed volumes. Tomes are
similar to volumes in AFS and Coda[11, 4, 9]. A tome
carries with it a notion of type; all items in a tome are of
the same type. A tome’s type determines type-specific
resources, operations, and dimensions of fidelity for
items in that tome. All tomes which have the same
type are logically grouped together into a codex.

We envision a small number of types in Odyssey.
The implementation effort to add a type is nontrivial,
and will likely be undertaken by experienced system
builders. A new type will be justified when applica-
tions using data of that type exhibit access patterns
fundamentally different from any other existing ones.
In the video example in Section 2.1, the player and ed-
itor have roughly the same access patterns, but prefer



SQL Tome

Unix Tome

Mpeg Tome

payroll

odyssey

movies

ball.mpg cal.mpg

hello.c

This figure illustrates a sample Odyssey names-
pace. In this example, there are three tomes,
each of a different type. The first tome, rooted
at odyssey, contains the single UNIX file
hello.c. The second, rooted at payroll, is
a database. Note that no nodes appear inside of
payroll; it is named associatively rather than
hierarchically. The third tome, rooted atmovies,
contains two MPEG movies, ball.mpg and
cal.mpg.

Figure 6: Odyssey Tomes

to make different tradeoffs. In contrast, video data,
which is inherently linear, will be accessed differently
from topographical maps, which are inherently spatial.

5.2. Providing Generic Support

There are many client-side tasks that are independent
of data type. This generic functionality is implemented
by the viceroy. The viceroy can be thought of as the
generic cache manager, which depends on type-specific
cache managers to do its job. The logical role of the
viceroy is illustrated in Figure 7.

The viceroy’s most important task is to act as the
single point of resource control in the system; all other
pieces of the Odyssey client are subordinate to it. The
viceroy also handles requests for generic resources,
and notifies applications when those resources leave
requested bounds. Finally the viceroy responds to re-
quests on individual Odyssey objects, and forwards
them to the appropriate warden.

Application

API
Extensions Kernel

Generic Support

The Viceroy

The Wardens
Type-Specific Support

Cache Manager

This figure illustrates the architecture of an
Odyssey client. Odyssey applications make use
of the Odyssey API extensions along with the
operating system’s API. Operations on Odyssey
objects are redirected by the kernel to the cache
manager, which is at user level for ease of im-
plementation. The cache manager is split into
two logical pieces: the viceroy, providing generic
support, and a set of wardens, each supporting a
single type.

Figure 7: Odyssey Client Architecture

5.3. Providing Type-Specific Support

We call Odyssey’s type-specific cache managers
wardens. There is one warden in the Odyssey cache
manager for each type in the Odyssey store. The war-
dens’ logical role on the client is illustrated in Figure 7.

The wardens are responsible for implementing the
access methods on objects of their type – both the stan-
dard UNIX operations as well as the type-specific ones.
The wardens also implement a number of different fi-
delity mechanisms, and allow applications to choose
between them. In addition, they provide reasonable
default policies for naive applications. Default policies
are also important in providing backward compatibility
with legacy applications.

6. Implementation Status

We have built a preliminary prototype of the Odyssey
client along with applications, wardens and servers
for two data types. The goals of the prototype were
twofold. First, we wanted to code applications that
might benefit from application-aware adaptation to the
Odyssey API to test the efficacy of the interface. Sec-
ond, we wished to explore the practical implications of
the division between viceroy and warden.



The two data types we have explored are
QuickTime[1] and GRASS[7]. QuickTime is a multi-
media encoding standard proposed by Apple Com-
puter. GRASS is a public domain geographical in-
formation system. Along with some basic applications
using these data types, we provide a simple control
program to a user of the prototype. The control pro-
gram is used to simulate various network bandwidths
on the connection between the cache manager and var-
ious servers. The applications then change the fidelity
of the data they access to match the simulated band-
width. While each application works well in isolation,
we have not yet explored resource control mechanisms
to arbitrate between them.

The QuickTime application we have explored is a
movie player. The player can open a QuickTime movie
on a server via the Odyssey cache manager and begin
playing it. The server stores the movie at several dif-
ferent levels of fidelity, and bundles them into a logical
movie. The player, by using ody request and re-
sponding to notifications, asks the cache manager to
fetch the highest fidelity stream that can be played in
real time given the available bandwidth.

The GRASS prototype supports applications via a
modification to the GIS library. These applications
display, query, and combine geographical data. The
main type of data is raster data: a two-dimensional
array of values set into a coordinate space. The client
caches files from the server in the local filesystem; the
raster data is fetched at various resolutions, depending
on available network bandwidth. The GRASS appli-
cations then access those cached files.

We have made many simplifications for ease of rapid
prototyping. The current prototype is completely user-
level, trading realistic resource management policies
and performance for simple implementation. It makes
no attempt to measure resources, and depends on the
control program instead. The UNIX file system call
interface is not currently implemented; the application
uses the Odyssey API exclusively in communicating
with the viceroy, and uses the local file system when
necessary for a cache. The prototype consists of a
library linked into Odyssey applications, a prototype
cache manager and wardens, and the applications and
servers. Each of these is discussed below.

6.1. The Odyssey Library

The API extensions are provided by a library linked
with the prototype application. All of the calls de-

scribed in Section 4 are provided, but the prototype
does not include the standard file system interface. The
library communicates with the cache manager via RPC.
The library responds to all notifications by the proto-
type cache manager, and forwards them to the proper
upcall handler registered by the application; the UNIX
signal interface is used to simulate upcalls.

6.2. The Prototype Cache Manager

The prototype cache manger consists of a simple
viceroy, along with the QuickTime and GRASS war-
dens. It performs minimal resource management, and
makes no attempt to authenticate users or arbitrate be-
tween conflicting applications. Rather than attempt to
estimate resources, it depends on the external control
program to advise it. It implements ody request
and ody cancel, and forwards ody tsop opera-
tions to the wardens based on the reference item’s type.
It notifies applications by sending them a signal, and
passing information about the notification through the
filesystem. In the sections below, we describe both the
QuickTime and GRASS wardens.

6.2.1. The QuickTime Warden

The QuickTime warden exports the interface we
envision for the final system. It has no type-
specific resources, but has four type-specific oper-
ations. Those operations are shown in Figure 8.
QT SwitchTracks, is a request for policy change,
while the other three perform data access. Each of
these operations is explained below.

QT OpenMovie takes a string which represents a
movie name and attempts to open it at every available
fidelity level on the server. Each version is opened as a
track of the base movie, and they are logically bundled
as a single movie and returned. Along with a handle for
the movie, akin to a file descriptor, QT OpenMovie
returns information about each track – specifically, the
average bytes per second required to transmit each
track across the network and the encoding method of
each track. Upon opening, the best possible track is
made the active track, and will remain active until
the application requests otherwise. QT CloseMovie
frees up any resources associated with an open movie.

QT GetFrame takes a movie handle, returned by
QT OpenMovie, and a time offset into the movie, and
returns the first frame of the active track to be displayed



QT OpenMovie(m) Open movie m and return track information.
QT CloseMovie(m) Close movie m and free resources.
QT GetFrame(t) Returns the first frame to display after time t.
QT SwitchTracks(m,i) Ask to make track i of movie m the active track

Figure 8: Operations Supported by the QuickTime Warden

after the offset. The frame is copied into theody tsop
return buffer for use by the player. GetFrame also
returns the index of the currently active track, so the
application can properly decode the frame.

QT SwitchTracks takes a movie handle, and a
track identifier within that movie handle, and makes
that track the new active track. Readahead is termi-
nated for the old active track, and started for the new
track. After the pre-read portion of the old track is ex-
hausted, QT GetFrame will return a frame from this
new track. The new track will be used until another
QT SwitchTracks request is made.

6.2.2. The GRASS Warden

The GRASS warden provides two operations: Grass
Fetch, which fetches a logical file from a server if
not already cached, and GrassSetQuality, which
determines which fidelity level future fetches will
use. The final version of the system won’t need
GrassFetch: it’ll have open redirected to it in-
stead.

GRASS stores logical files in groups of related phys-
ical files. To avoid inconsistencies such as a raster
header file showing the full size and a raster data
file with lower resolution data, the prototype warden
fetches files as a group. The GRASS warden currently
makes no effort at cache replacement. Future refine-
ments will address this as well.

6.3. The QuickTime Server and Player

The obvious fidelity dimension to exploit in video
is the quality of individual frames; by reducing frame
quality, we can also reduce bandwidth requirements.
The QuickTime server currently stores movies at three
different fidelity levels: full color uncompressed, full
color with lossy JPEG compression, and black and
white. Individual tracks can be opened, pre-read and
closed. The server itself does not manage the different

fidelity levels of the same logical movie as a unit; that
is handled by the QuickTime warden.

The QuickTime player was modeled after a pre-
viously built standalone version that used the UNIX
file system interface. It was redesigned to use the
ody tsop interface exported by the warden, rather
than the standard UNIX file system interface. The new
player opens a movie, finds the stream with the highest
possible quality, and begins playing it. It also places
a request to be notified if the bandwidth drops too low
to support this track. If so, it switches to the new
best possible stream. If, at some later time, bandwidth
improves enough to allow playing a better track, the
player will request a change.

Although the prototype explicitly trades perfor-
mance for ease of implementation, the player has ade-
quate performance in playing back movies, even at the
highest quality. Of particular interest is the fact that the
player was both simplified and functionally improved
by the switch from the UNIX file system interface to
that provided by Odyssey.

6.4. The GRASS Server and Applications

The server stores raster objects at three levels of
fidelity, losing a factor of two in resolution for each
degradation. Because the rasters are two dimensional,
each degradation provides a savings of a factor of four
in data size.

Applications wishing to open raster objects share a
single routine in the GIS library. That routine first
determines the estimated bandwidth available to the
viceroy through the request interface with an empty
bounds window, effectively polling the viceroy. Since
no value could satisfy that bounds window, the band-
width estimation is returned by the request call. The
application then uses the GrassSetQuality oper-
ation to ask for a particular fidelity of raster. That
fidelity is then cached on local disk for future use by
GRASS applications.



7. Conclusion

Though rudimentary in many respects, our preliminary
prototype has allowed us to gain initial validation of
our ideas at low implementation cost. The results so
far are encouraging. We have taken the source code
of applications for two data types and have been able
to restructure them into the Odyssey framework with
modest effort.

We are now working toward a more complete and
efficient prototype, motivated by two goals. First, we
would like the prototype to support a broader collec-
tion of data types and associated applications. This
will stress the designs of the Odyssey API and archi-
tecture, expose shortcomings, if any, and lead to refine-
ments in both. It will also deepen our understanding
of application-aware adaptation. Second, we would
like the prototype to be better integrated with an oper-
ating system. An in-kernel implementation will allow
more serious resource management, provide better per-
formance and functionality, and enable more rigorous
evaluation of our design.

As was discussed early in this paper, the constraints
of mobile computing lead inevitably to the recogni-
tion that adaptivity is essential in any system that pro-
vides mobile data access. But although the general
importance of adaptivity has been recognized by many
researchers[2, 3, 6, 12, 13], we are not aware of specific
system designs, much less implementations, that sup-
port application aware adaptation. The work reported
here thus represents a journey into uncharted waters.

References

[1] APPLE COMPUTER, INC. Inside Macintosh: QuickTime.
Addison-Wesley Publishing Company, 1993.

[2] DUCHAMP, D. Issues in Wireless Mobile Computing.
In Proceedings of the Third Workshop on Workstation
Operating Systems (Key Biscayne, FL, April 1992).

[3] FORMAN, G. H., AND ZAHORJAN, J. The Challenges
of Mobile Computing. IEEE Computer 27, 4 (April
1994).

[4] HOWARD, J. H., KAZAR, M. L., MENEES, S. G.,
NICHOLS, D. A., SATYANARAYANAN, M., SIDEBOTHAM,
R. N., AND WEST, M. J. Scale and Performance in a
Distributed File System. ACM Transactions on Com-
puter Systems 6, 1 (February 1988).

[5] KISTLER, J. J., AND SATYANARAYANAN, M. Discon-
nected Operation in the Coda File System. ACM Trans-
actions on Computer Systems 10, 1 (February 1992).

[6] KULKARNI, D. C., BANERJI, A., CASEY, M. R., AND

COHN, D. L. Information Access in Mobile Computing
Environments. Tech. Rep. TR-93-11, University of
Notre Dame, Notre Dame, 1993.

[7] MADRY, S. Geographical Resources Analysis Support
System (GRASS), an Integrated Public Domain GIS
and Image Processing System. In GIS/LIS 1989 Pro-
ceedings (Orlando, FL, November 1989).

[8] SALTZER, J., REED, D., AND CLARK, D. End-To-End
Arguments in System Design. ACM Transactions on
Computer Systems 2, 4 (November 1984).

[9] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P.,
OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D. C.
Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactionson Com-
puters 39, 4 (April 1990).

[10] SATYANARAYANAN, M., NOBLE, B., KUMAR, P., AND

PRICE, M. Application-Aware Adaptation for Mobile
Computing. Operating Systems Review 29, 1 (January
1995). Also available as Tech. Rep. CMU-CS-94-183,
Carnegie Mellon University, School of Computer Sci-
ence.

[11] SIDEBOTHAM, R. Volumes: The Andrew File System
Data Structuring Primitive. In European Unix User
Group Conference Proceedings (August 1986). Also
available as Tech. Rep. CMU-ITC-053, Carnegie Mel-
lon University, Information Technology Center.

[12] THEIMER, M., DEMERS, A., AND WELCH, B. Operating
System Issues for PDAs. In Proceedings of the Fourth
Workshop on Workstation Operating Systems (October
1993), IEEE.

[13] WEISER, M. Some Computer Science Issues in Ubiq-
uitous Computing. Communictions of the ACM 36, 7
(July 1993), 75–84.


